
Akademickie Mistrzostwa Polski
w Programowaniu Zespołowym

Kraków
2019-10-27

Problem A: Assimilation

Time limit: 1s, memory limit: 512MB.

An enlightened race of aliens plans to assimilate a star system, to help its inhabitants achieve
perfection. They may resist, but – as you are all well aware – resistance is futile.

There are 𝑛 planets in the system, inhabited by 𝑎1, 𝑎2, . . . , 𝑎𝑛 people, respectively. Aliens
start with 𝑘 assimilation ships and are allowed to make any of the following moves:

• An invasion requires landing on a planet with some part of the fleet. The number of landing
ships 𝑠 must be greater or equal to the population𝑚 of the planet. After the invasion, these
ships disappear, the planet is conquered and now has 𝑚+ 𝑠 inhabitants.

• A mobilization creates, from a conquered planet, a number of new ships equal to the
population of the planet. Every planet can be mobilized at most once.

For Aliens, invasions are easy and natural, but mobilizations turn out to be a bit tricky. Help
them conquer all the planets in the system with minimal possible number of mobilizations.

Input

The first line of input contains the number of test cases 𝑧 (1 ¬ 𝑧 ¬ 30). The test cases follow,
each one in the following format:

The first line of every test case contains two integers 𝑛 and 𝑘 (1 ¬ 𝑛 ¬ 200 000; 1 ¬ 𝑘 ¬ 109)
– the number of planets, and the size of Aliens’ initial fleet. The second line contains 𝑛 integers
𝑎1, . . . , 𝑎𝑛 (1 ¬ 𝑎𝑖 ¬ 109) – the populations of the respective planets.

The sum of 𝑛 values over all test cases does not exceed 500 000.

Output

For every test case, output a single integer: the minimal number of mobilizations required to
conquer all the planets. If such conquest is impossible, output −1 instead.

Example

For the input data The correct answer is

4
3 15
6 5 26
3 15
6 5 27
2 1000000000
500123123 497000000
7 2
6 2 4 1 9 3 12

2
-1
0
4

Problem A: Assimilation 1/1

Akademickie Mistrzostwa Polski
w Programowaniu Zespołowym

Kraków
2019-10-27

Problem B: Little Worm

Time limit: 5s, memory limit: 512MB.

Little Worm is living on a tree. The tree has 𝑛 vertices (and is a connected, undirected acyclic
graph), and Worm occupies the whole path between the vertices 𝑎 and 𝑏.

Worm would like to move to another path – the one between vertices 𝑐 and 𝑑 – as it is more
sunny there. It is known that the paths 𝑎↔ 𝑏 and 𝑐↔ 𝑑 have no vertices in common.

To change its position on the tree, Worm can make some moves, which consist of entering
a free vertex with Worm’s either end. Formally, if Worm is currently occupying a path between
𝑥 and 𝑦, it may choose a new vertex 𝑧 adjacent to 𝑥, which is not on the path 𝑥 ↔ 𝑦. Then
Worm frees (stops occupying) 𝑦, taking 𝑧 instead. In a similar way, Worm can choose a vertex
𝑧′ adjacent to 𝑦, free 𝑥 and occupy 𝑧′. After a single move Worm still occupies some path, and
its length does not change.

Worm is aiming to get to the path between 𝑐 and 𝑑, but being quite lazy, it doesn’t plan for
more than 10 · 𝑛 moves. Can you help it reach its goal within that limit?

Input

The first line of input contains the number of test cases 𝑧 (1 ¬ 𝑧 ¬ 7000). The test cases
follow, each one in the following format:

The first line of a test case contains a single integer 𝑛 (4 ¬ 𝑛 ¬ 100 000) – the number of the
vertices of a tree. Each of the following 𝑛 − 1 lines contains two integers 𝑢, 𝑣 (1 ¬ 𝑢 ̸= 𝑣 ¬ 𝑛),
describing the endpoints of a single edge.

In the next line two integers 𝑎 and 𝑏 (1 ¬ 𝑎 ̸= 𝑏 ¬ 𝑛) are given. These are the endpoints of
the path that is Worm’s starting position.

The next line contains the endpoints of the path which is Worm’s goal, given as two integers
𝑐 and 𝑑 (1 ¬ 𝑐 ̸= 𝑑 ¬ 𝑛).

The number of vertices on the path between 𝑎 and 𝑏 match the number of vertices on the
path between 𝑐 and 𝑑. You may also assume that those two paths have no common vertices.

The sum of all values of 𝑛 over all test cases does not exceed 1 000 000.

Output

For every test case, if Worm cannot reach its goal in 10 · 𝑛 moves, output −1. Otherwise,
output a possible sequence of Worm’s moves in two lines: first consisting the number of moves
𝑞 (1 ¬ 𝑞 ¬ 10 · 𝑛) and the other containing 𝑞 integers 𝑣1, 𝑣2, . . . , 𝑣𝑞 – the required moves. For
𝑖 = 1, 2, . . . , 𝑞, the value 𝑣𝑖 should denote the vertex which is entered by Worm in the 𝑖-th move.
You may output any correct sequence that moves Worm to the goal and has no more than 10 ·𝑛
moves (in particular, you do not have to minimize the number of moves). Assume that Worm is
symmetrical – it can move in both directions and it can enter the goal path facing either side.

Problem B: Little Worm 1/2

Akademickie Mistrzostwa Polski
w Programowaniu Zespołowym

Kraków
2019-10-27

Example

For the input data A possible correct answer is

3
6
1 2
1 3
1 4
4 5
4 6
2 3
5 6
15
1 2
1 6
2 3
2 4
2 5
6 7
6 8
5 9
6 10
9 11
9 12
9 13
12 14
14 15
14 13
3 6
6
1 2
1 3
2 4
4 5
5 6
4 6
3 2

-1
7
15 5 2 1 6 7 3
3
2 1 3

Problem B: Little Worm 2/2

Akademickie Mistrzostwa Polski
w Programowaniu Zespołowym

Kraków
2019-10-27

Problem C: Polygon

Time limit: 1s, memory limit: 512MB.

You are given 𝑛 segments of lengths ℓ1, ℓ2, . . . , ℓ𝑛, respectively. Determine the largest possible
circumference of a convex polygon that can be constructed using these segments (in any order,
and not neccessarily all of them). The polygon must be non-degenerate – in other words, its area
must be positive.

Input

The first line of input contains the number of test cases 𝑧 (1 ¬ 𝑧 ¬ 100 000). The test cases
follow, each one in the following format:

The first line of a test case contains the number of segments 𝑛 (1 ¬ 𝑛 ¬ 100 000). In the
second line, there are 𝑛 integers ℓ1, . . . , ℓ𝑛 (1 ¬ ℓ𝑖 ¬ 109) – the lengths of the segments.

The sum of 𝑛 values over all test cases does not exceed 1 000 000.

Output

For each test case, output a single integer – the largest possible circumference of a convex
polygon made of given segments. If no such polygon can be constructed at all, output 0.

Example

For the input data The correct answer is

4
6
1 2 3 4 5 6
3
9 5 14
4
5 15 4 6
2
10 11

21
0
15
0

Problem C: Polygon 1/1

Akademickie Mistrzostwa Polski
w Programowaniu Zespołowym

Kraków
2019-10-27

Problem D: Frogs

Time limit: 3s, memory limit: 512MB.

You may think that frogs are only good for leaping and croaking, but it turns out that they
are also quite proficient coders! Your task is to choose three frogs which would form the best
team for OpenFrogCup.

In the frogs’ favourite pond there are 𝑛 stones in a row, spaced 1 meter apart from each
other. On every stone, a frog sits. Stones (and frogs) are numbered 1, 2, . . . , 𝑛 from the leftmost
to the rightmost one. The 𝑖-th frog sits on 𝑖-th stone and is described by two parameters: its leap
range 𝑟𝑖 and its programming skill 𝑠𝑖. The frog can reach any stone which is not farther than 𝑟𝑖
meters (in other words, any stone with index 𝑗 in [𝑖− 𝑟𝑖, 𝑖+ 𝑟𝑖]). Each frog is willing to jump at
most once.

The team for OpenFrogCup must consist of exactly three members which can train together.
This means that there must be a stone that all three frogs can jump to (allowing zero-length
jumps). Determine the largest possible sum of programming skills of such a team.

The limits for the problem guarantee that there always exists at least one possible three-frog
team.

Input

The first line of input contains the number of test cases 𝑧 (1 ¬ 𝑧 ¬ 30). The test cases follow,
each one in the following format:

The first line of a test case contains an integer 𝑛 (3 ¬ 𝑛 ¬ 200 000) – the number of stones
(and also the frogs). Each of the following 𝑛 lines contain two integers 𝑟𝑖, 𝑠𝑖 (1 ¬ 𝑟𝑖, 𝑠𝑖 ¬ 200 000)
– the range and the skill of the 𝑖-th frog, respectively.

The sum of 𝑛 values over all test cases does not exceed 500 000.

Output

For every test case, output a single integer – the largest possible sum of skills of a three-frog
team.

Problem D: Frogs 1/2

Akademickie Mistrzostwa Polski
w Programowaniu Zespołowym

Kraków
2019-10-27

Example

For the input data The correct answer is

3
4
1 39
2 17
4 5
1 40
3
1 10
1 20
1 30
7
5 4
4 3
3 2
2 1
3 2
4 3
5 4

62
60
11

Problem D: Frogs 2/2

Akademickie Mistrzostwa Polski
w Programowaniu Zespołowym

Kraków
2019-10-27

Problem E: The Great Drone Show

Time limit: 30s, memory limit: 1024MB.

This year’s Great Drone Show is going to be a stunning success! Well, if nothing goes horribly
wrong. And if everybody sticks to the plan.

The plan is worked out in every detail. At the beginning, 𝑛 drones are parked on the ground.
To describe their movement, we introduce standard Euclidean coordinates in three dimensions,
in which the ground is the 𝑧 = 0 plane. The starting position of the 𝑖-th drone is then described
as (𝑥𝑖, 𝑦𝑖, 0).

To allow communication during the show, there are 𝑚 cables between pairs of drones. The
cables initially also lie on the ground, in the form of straight segments connecting some pairs of
drones. It is known that from every drone there is a sequence of cables to every other drone (the
cable network is connected). Moreover, to avoid tangling the cables, no two segments cross
each other (they can only have common endpoints).

During the show a sequence of 𝑘 moves will be performed. Every move consists of changing
the height (i.e. the 𝑧-coordinate) of one of the drones. Each move will be performed smoothly
and will start only after the previous one ends. During a move, the distance between some drones
may change – fortunately, the cables can stretch to some degree. For every cable we know the
maximal length it can have – if its endpoint drones go further than this value, the cable breaks.

The show organizers are prepared for some cables to break. However, some pairs of drones
must remain able to communicate, directly or indirectly. Given 𝑞 specific, critical pairs of drones,
determine if communication between these pairs becomes impossible at some point during the
show, and if so, determine the move which will cause the connection loss.

Input

The first line of input contains the number of test cases 𝑧 (1 ¬ 𝑧 ¬ 400). The test cases
follow, each one in the following format:

The first line contains the number of drones 𝑛 (2 ¬ 𝑛 ¬ 500 000). Each of the following 𝑛
lines contains two integers 𝑥𝑖, 𝑦𝑖 (|𝑥𝑖|, |𝑦𝑖| ¬ 108) – the 𝑥 and 𝑦 coordinates of the 𝑖-th drone. No
two drones occupy the same starting location.

The next line contains an integer 𝑚 (1 ¬ 𝑚 ¬ 3 · 𝑛) – the number of cables. Each of the
following 𝑚 lines describes a single cable, and contains three integers 𝑢, 𝑣, 𝑙 (1 ¬ 𝑢 ̸= 𝑣 ¬ 𝑛;
1 ¬ 𝑙 ¬ 109) – the numbers of connected drones and its maximal length, respectively. A pair of
drones can be connected by at most one cable. Every cable’s length at its starting position fits
within the given length limit.

The next line contains the number of moves 𝑘 (1 ¬ 𝑘 ¬ 500 000). Each of the following 𝑘 lines
contain two integers 𝑣, ℎ (1 ¬ 𝑣 ¬ 𝑛; |ℎ| ¬ 109) – number of the moving drone and its change of
height (positive it the drone raises, negative if it falls). You may assume that no drone ever falls
below the ground (the 𝑧 coordinates remain non-negative).

Finally, the following line contains an integer 𝑞 (1 ¬ 𝑞 ¬ 500 000) – the number of critical
pairs to be checked. In the next 𝑞 lines, these pairs are described – each one contains two drone
numbers 𝑢, 𝑣 (1 ¬ 𝑢 ̸= 𝑣 ¬ 𝑛).

The sum of 𝑛 values over all test cases does not exceed 1 000 000. Similarly, both the sum of
𝑘 values and the sum of 𝑞 values also do not exceed 1 000 000.

Problem E: The Great Drone Show 1/2

Akademickie Mistrzostwa Polski
w Programowaniu Zespołowym

Kraków
2019-10-27

Output

For every test case, output in separate lines 𝑞 integers – the answers for each critical pair.
For every such pair of drones, output the number of the first move after which the drones lost
the ability to communicate. The moves are numbered starting from 1. If a critical pair remains
connected during the whole show, output −1 instead.

Example

For the input data The correct answer is

1
4
0 0
0 12
0 24
0 25
3
1 2 13
2 3 13
3 4 1
4
3 1
2 6
3 1
2 -6
4
1 2
2 3
3 4
1 4

2
-1
1
1

Problem E: The Great Drone Show 2/2

Akademickie Mistrzostwa Polski
w Programowaniu Zespołowym

Kraków
2019-03-19

Problem F: Fantastic compression

Time limit: 3s, memory limit: 512MB.

Franek had one job: to memorize a permutation 𝑃 of the sequence (1, 2, . . . , 𝑛). This, however,
proved too boring. Instead, he compressed the numbers in a new, fantastic way he devised: he
took a small integer 𝑘 and memorized only the sums of all connected 𝑘-length fragments of 𝑃 .
In other words, Franek now has a sequence 𝑆 = (𝑆1, 𝑆2, . . . , 𝑆𝑛−𝑘+1), where:

• 𝑆1 = 𝑃1 + 𝑃2 + . . .+ 𝑃𝑘,

• 𝑆2 = 𝑃2 + 𝑃3 + . . .+ 𝑃𝑘+1,

• . . .

• 𝑆𝑛−𝑘+1 = 𝑃𝑛−𝑘+1 + 𝑃𝑛−𝑘+2 + . . .+ 𝑃𝑛.

The method swiftly proved not-so-fantastic, though. First, Franek discovered, to his horror,
that sometimes there are several permutations which all compress to the same sequence. Also, he
is not sure anymore if he remembered the compressed sequence correctly – the initial permutation
may now be lost forever!

Given a compressed sequence 𝑆, help Franek find all permutations 𝑃 which correspond to 𝑆.

Input

The first line of input contains the number of test cases 𝑧 (1 ¬ 𝑧 ¬ 1000). The test cases
follow, each one in the following format:

The first line of a test case contains the length of the permutation 𝑛 and the small integer
𝑘 chosen by Franek (2 ¬ 𝑛 ¬ 25 000; 2 ¬ 𝑘 ¬ min(𝑛, 6)). The second line contains 𝑛 − 𝑘 + 1
integers: the elements of the compressed sequence 𝑆 (1 ¬ 𝑆𝑖 ¬ 1 000 000).

The total length of permutations in all testcases does not exceed 250 000.

Output

For every test case, output first the number 𝑐 of permutations that correspond to the
given sequence 𝑆. In the next 𝑐 lines, output these permutations in lexicographic order. Every
permutation should be given as 𝑛 integers in a single line, separated by spaces.

Assume that for the given tests, 𝑐 is never greater than 1 000.

Example

For the input data The correct answer is

2
5 3
8 10 12
5 3
10 10 10

2
1 2 5 3 4
2 1 5 4 3
0

Problem F: Fantastic compression 1/1

Akademickie Mistrzostwa Polski
w Programowaniu Zespołowym

Kraków
2019-10-27

Problem G: Bookstore

Time limit: 7s, memory limit: 512MB.

You own a very peculiar bookstore, which sells old books, but you store all of them on a
single shelf, in random order, and you do not care about the books’ content. Nor do your clients
– they tend to come into the store and simply ask for “all the books on that shelf, starting from
this one and ending here”. To be precise, every client buys some connected (and non-empty)
fragment of books from the shelf.

Sometimes, though, you get more picky clients, who expect more from a book – actually,
they expect it to have the right size. A picky client wants a fragment of shelf in which all the
books have their height not smaller than 𝑙 and not greater than ℎ.

Given a sequence of integers – the heights of all the books on the shelf – determine the
number of possible connected fragments which satisfy these requirements.

Also, we mentioned that the books are in random order. Formally, the input sequence was
generated with the following program, for some values of 𝑁 ∈ {1, 2, . . . , 100 000} and 𝑀 = 10𝑞

with 𝑞 ∈ {1, 2, . . . , 6}.

srand48(N + M);
for (int i = 0; i < N; ++i)

a[i] = 1 + lrand48() % M;

You do not actually need to know how the RAND48 library works. It is enough to assume
that the function lrand48 returns 31-bit non-negative integers picked uniformly at random.

Input

The first line of input contains the number of test cases 𝑧 (1 ¬ 𝑧 ¬ 5). The test cases follow,
each one in the following format:

The first line of a test case contains the number of books 𝑛 and the number of picky clients
𝑘 (1 ¬ 𝑛 ¬ 200 000, 1 ¬ 𝑘 ¬ 500 000).

The second line contains a sequence of 𝑛 positive integers not exceeding 1 000 000 – the
heights of all the books, from the first (leftmost) to the last (rightmost) one.

The final 𝑘 lines describe the clients’ requirements. The 𝑖-th of these lines contains two
integers 𝑙𝑖, ℎ𝑖 (1 ¬ 𝑙𝑖 ¬ ℎ𝑖 ¬ 1 000 000), describing a client that wants books to be not smaller
than 𝑙𝑖 and not greater than ℎ𝑖.

The total number of books in all test cases does not exceed 600 000, and the total number of
clients in all test cases does not exceed 1 500 000.

Output

For every client, output the number of non-empty connected fragments of the book sequence
which safisty the client’s requirements.

Problem G: Bookstore 1/2

Akademickie Mistrzostwa Polski
w Programowaniu Zespołowym

Kraków
2019-10-27

Example

For the input data The correct answer is

2
10 3
9 9 3 2 1 9 6 9 1 7
1 13
6 6
2 9
5 1
66575 45720 67904 18764 35162
20000 80000

55
1
17
7

Problem G: Bookstore 2/2

Akademickie Mistrzostwa Polski
w Programowaniu Zespołowym

Kraków
2019-10-27

Problem H: Cheese Game

Time limit: 2s, memory limit: 512MB.

After taking part in the annual Two-player Games and Applied Cryptography Symposium,
Alice and Bob want to relax by playing their favourite game. They have arranged 𝑛 cheese slices
in a row, numbered from 1 do 𝑛. As we all know, though cheese is tasty in general, some slices
can be better than others – this is why the 𝑖-th slice is described by its deliciousness 𝑜𝑖.

Alice starts the game and the players alternate their moves. In a move, a player may eat
any set of cheese slices that are still left on the board, providing that the set contains no two
neighbouring slices (i.e. numbered 𝑖 and 𝑖+1 for any 1 ¬ 𝑖 ¬ 𝑛−1). We assume that the numbers
of the slices do not change, so during the game no new neighbouring pairs appear.

Of course, both players aim to maximize the total delicioussness of their eaten pieces.
Assuming that they both play optimally, what is the maximal score that Alice can achive?

Input

The first line of input contains the number of test cases 𝑧 (1 ¬ 𝑧 ¬ 20). The test cases follow,
each one in the following format:

The first line of a test case contains the number of cheese slices 𝑛 (1 ¬ 𝑛 ¬ 100 000). The
second line contains 𝑛 integers 𝑜1, 𝑜2, . . . , 𝑜𝑛 (1 ¬ 𝑜𝑖 ¬ 1 000 000) – the values of the pieces’
delicioussness.

Output

For every test case, output a single integer – the total delicioussness of the slices eaten by
Alice, assuming that both players play optimally.

Example

For the input data The correct answer is

2
3
10 10 10
4
1 2 3 4

20
7

Problem H: Cheese Game 1/1

Akademickie Mistrzostwa Polski
w Programowaniu Zespołowym

Kraków
2019-10-27

Problem I: Henry Porter and the Palindromic Radius

Time limit: 25s, memory limit: 512MB.

A young wizard, Henry Porter, has just received sad news – the eldest of his family, uncle
Markus Radius Palindromus Black, passed away. Uncle Markus had a reputation of being a quite
eccentric person, using complicated binary magic, and was also known to be very, very rich.

Black’s will states that Henry should inherit his mysterious chamber of treasures. To enter
and claim it, however, the young wizard must say the right password 𝐻, which is a word of
length 𝑛, consisting of characters 0 and 1. Uncle Markus did not tell Henry the password – it
certainly wouldn’t be his style. Instead, he computed, for every 𝑥 = 1, 2, . . . , 𝑛, the palindromic
radius 𝑝𝑥 – the largest possible integer such that the word 𝐻[𝑥− 𝑝𝑥 .. 𝑥+ 𝑝𝑥] of length 2𝑝𝑥 + 1
centered at 𝐻[𝑥] exists and is a palindrome. Henry then only received the values 𝑝1, . . . , 𝑝𝑛. For
example, if the password was 10111010, Henry would get the sequence (0, 1, 0, 3, 0, 1, 1, 0).

Henry would prefer Uncle Markus not to test his algorithmic skills while being dead, but,
well, there is no one to complain. And he has good friends who can help him! Given the sequence
left by Markus in his will, determine all possible passwords that correspond to it. As the will is
battered and stained, it might even happen that there is no solution at all.

Input

The first line of input contains the number of test cases 𝑧 (1 ¬ 𝑧 ¬ 200 000). The test cases
follow, each one in the following format:

A test case consists of two lines. The first line contains a single integer 𝑛 – the length of
both the password and Black’s sequence (2 ¬ 𝑛 ¬ 1 000 000). The second line contains 𝑛 integers
𝑝1, 𝑝2, . . . , 𝑝𝑛 (0 ¬ 𝑝𝑖 ¬ 𝑛) – the palindromic radii for all the characters in the password.

The sum of 𝑛 values over all test cases does not exceed 5 · 107.

Output

For every test case, output first the number 𝑘 of possible passwords. If 𝑘 > 0, output in the
next 𝑘 lines all the solutions as {0,1}-sequences. The sequences must be given in lexicographic
order.

You may assume that 𝑘 does not exceed 100.

Example

For the input data The correct answer is

1
8
0 1 0 3 0 1 1 0

4
00010000
01000101
10111010
11101111

Problem I: Henry Porter and the Palindromic Radius 1/1

Akademickie Mistrzostwa Polski
w Programowaniu Zespołowym

Kraków
2019-10-27

Problem J: Antennas

Time limit: 8s, memory limit: 512MB.

In a secret military base, a new communication technology is being tested. For the experiment,
𝑚 antennas were constructed inside.

The terrain around the base is perfectly flat, and the base, seen from above, is a convex
polygon. The boundary of the polygon is a wall that protects the base from intruders, as well as
blocks the radio waves from leaving the base to be possibly intercepted by foreign agents.

Unfortunately, some construction works are required in the facility, and two of the polygon’s
walls must be torn down. This creates a security risk: if two spies are placed outside the base in
such a way that two of the antennas lie on the line between them, and there is no wall blocking
this line, then the spies may listen to the communication between those two antennas.

Your goal is, for some possible scenarios of removal of two walls, to determine the number of
pairs of antennas which are compromised in the way described above.

The picture above corresponds to the first case of the example input from the “Example”
section. In this case, the base is a pentagon with four antennas, denoted by little crosses. All the
lines between pairs of antennas are also shown.

Input

The first line of input contains the number of test cases 𝑧 (1 ¬ 𝑧 ¬ 200 000). The test cases
follow, each one in the following format:

The first line of a test case contains an integer 𝑛 (3 ¬ 𝑛 ¬ 10) – the number of vertices of
the polygon. The next 𝑛 lines contain two integers – the coordinates of the vertices, presented
clockwise. The vertices are numbered 0, 1, . . . , 𝑛− 1 in order in which they appear.

Problem J: Antennas 1/3

Akademickie Mistrzostwa Polski
w Programowaniu Zespołowym

Kraków
2019-10-27

The next line contains an integer 𝑚 (2 ¬ 𝑚 ¬ 50 000) – the number of antennas inside the
base – and the 𝑚 following lines contain the coordinates of the antennas.

The next line contains another integer 𝑞 (1 ¬ 𝑞 ¬ 10) – the number of scenarios to consider.
The last 𝑞 lines describe scenarios – the 𝑖-th line contains two integers 𝑎𝑖, 𝑏𝑖 (0 ¬ 𝑎𝑖 < 𝑏𝑖 ¬ 𝑛−1).
Such a pair denotes removing the walls 𝑎𝑖 and 𝑏𝑖 and requires to compute the number of distinct
lines that go through some two antennas and do not cross neither the segment between the
vertices 𝑎𝑖 and 𝑎𝑖 + 1 nor the segment between 𝑏𝑖 and (𝑏𝑖 + 1) mod 𝑛.

All coordinates are integers whose absolute values do not exceed 109. In any single testcase,
all points of the input are distinct and no three of them are collinear.

Every test case, including the first, is preceded by a single empty line.
The sum of all 𝑚 values in all test cases does not exceed 300 000.

Output

For every testcase output, in separate lines, the answers to all given scenarios.

Problem J: Antennas 2/3

Akademickie Mistrzostwa Polski
w Programowaniu Zespołowym

Kraków
2019-10-27

Example

For the input data The correct answer is

2

5
0 0
0 5
3 7
6 5
6 0
4
1 2
1 3
5 2
5 3
3
0 3
1 4
1 2

4
-1 -1
-1 1
2 1
2 -1
2
0 0
1 0
6
0 1
0 2
0 3
1 2
1 3
2 3

4 1 0
0 1 0 0 0 0

Problem J: Antennas 3/3

Akademickie Mistrzostwa Polski
w Programowaniu Zespołowym

Kraków
2019-10-27

Problem K: Ghost

Time limit: 10s, memory limit: 512MB.

While sightseeing the Wawel castle in Kraków, your team has been trapped in an ancient
chamber by the Ghost. He will not let you out, unless you answer his questions.

On the wall there are 𝑛 paintings – if we treat the wall as a standard Euclidean plane, the
paintings are axis-aligned rectangles. For every painting you know precisely its dimensions and
starting location. In some moment – let us call it the moment 0 – Ghost starts moving the
paintings, each one in its own direction and speed. As you are an observant team, for every
painting you can easily guess its exact speed.

After some time, the Ghost stops the show and starts asking tough questions. Every question
consists of two numbers 𝑙 and 𝑟 denoting some moments of the show. You must tell Ghost if
there was a moment between 𝑙 and 𝑟 when some spot on the wall was simultaneously covered
by all the paintings. If so, you must also determine the maximal possible common area for all
paintings between the moments 𝑙 and 𝑟.

If you want to ever leave this room, better give Ghost the right answers!

Input

The first line of input contains the number of test cases 𝑧 (1 ¬ 𝑧 ¬ 4000). The test cases
follow, each one in the following format:

The first line of a test case contains the number of paintings 𝑛 (1 ¬ 𝑛 ¬ 100 000). Each
of the following 𝑛 lines contains six numbers 𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑣𝑥, 𝑣𝑦 (−1 000 000 ¬ 𝑥1 < 𝑥2 ¬
1 000 000; −1 000 000 ¬ 𝑦1 < 𝑦2 ¬ 1 000 000; −1 000 000 ¬ 𝑣𝑥, 𝑣𝑦 ¬ 1 000 000), where (𝑥1, 𝑦1) are
the coordinates of the lower left corner of the painting, (𝑥2, 𝑦2) – the upper right corner, and
(𝑣𝑥, 𝑣𝑦) is its speed vector. This means that in the moment 𝑡 the lower left corner is at the spot
(𝑥1 + 𝑡𝑣𝑥, 𝑦1 + 𝑡𝑣𝑦), and the upper right corner is at (𝑥2 + 𝑡𝑣𝑥, 𝑦2 + 𝑡𝑣𝑦).

The next line contains the number of Ghost’s questions 𝑞 (1 ¬ 𝑞 ¬ 100 000). Each of the
following 𝑞 lines contains two real numbers 𝑙, 𝑟 (0 ¬ 𝑙 ¬ 𝑟 ¬ 1 000 000) given with at most 4
decimal places after the separator, meaning that Ghost asks for a closed time interval [𝑙, 𝑟].

The total number of paintings in all test cases does not exceed 1 000 000. The total number
of questions in all test cases also does not exceed 1 000 000.

Output

For every Ghost’s question output a single real number – the maximal area achieved by the
intersection of all the paintings in the given time interval. Your answer will be considered correct
if the absolute or relative error is at most 10−6. In other words, if your program outputs 𝑎 and
the correct value is 𝑏, the answer is accepted if |𝑎−𝑏|

max(1,𝑏) ¬ 10−6.
The intersection may be empty – in that case, your program should output 0 (±10−6).

Problem K: Ghost 1/2

Akademickie Mistrzostwa Polski
w Programowaniu Zespołowym

Kraków
2019-10-27

Example

For the input data The correct answer is

2
2
0 0 1 1 1 1
1 1 2 2 -1 -1
3
0 0
0.25 0.25
0 2
3
0 0 1 1 2 2
0 0 1 1 1 1
1 1 2 2 -1 -1
1
0 2

0.000000000
0.250000000
1.000000000
0.444444444

Problem K: Ghost 2/2

Akademickie Mistrzostwa Polski
w Programowaniu Zespołowym

Kraków
2019-10-27

Problem L: Donuts

Time limit: 30s, memory limit: 8MB.

A set 𝑆 of integer coordinate points in a plane is a donut, if there exists a midpoint (𝑎, 𝑏)
and two radii 𝐿 and 𝑅 (with integer 𝑎, 𝑏, 𝐿,𝑅 and non-negative radii) such that 𝑆 is precisely
the set of all points whose distance from (𝑎, 𝑏) is in the interval (𝐿,𝑅]. Formally, 𝑆 = {(𝑥, 𝑦) ∈
Z× Z : 𝐿 < 𝑑𝑖𝑠𝑡((𝑥, 𝑦), (𝑎, 𝑏)) ¬ 𝑅}, where 𝑑𝑖𝑠𝑡 denotes standard plane distance.

We begin with an empty set and add points one by one. Determine, after every added point,
if the set is currently a donut.

Please note an exceptionally low memory limit (8MB) for this problem.

Input

The first line of input contains the number of points 𝑛 (2 · 107 ¬ 𝑛 ¬ 2.5 · 107). Each of the
next 𝑛 lines describes a single added point, giving its coordinates separated by a single space.
The coordinates are integers of absolute value not greater than 5000. All the given points are
distinct.

Output

For every point output (in a separate line) TAK, if after adding this point the set is a donut,
and NIE, if it isn’t.

Example

The example is given only for explaining the input format, and it obviously does not satisfy
the 𝑛 ⊗ 2 · 107 condition (though it satisfies all the others). Your program will not be checked on
the example test.

For the input data The correct answer is

12
4 1
3 2
3 0
2 3
1 0
0 1
1 2
2 -1
2 2
3 1
2 0
1 1

NIE
NIE
NIE
NIE
NIE
NIE
NIE
TAK
NIE
NIE
NIE
TAK

Problem L: Donuts 1/1

